Table of Fourier transform

Table of Fourier transform

bookmark

 

S.No F(t) F(ω)
1 \( e^{-at}u(t) \) \( \frac {1}{a+j\omega}, \ a\gt 0 \)
2 \( e^{at}u(-t) \) \( \frac {1}{a-j\omega}, \ a\gt 0 \)
3 \( e^{-a|t|} \) \( \frac {2a}{a^2+\omega^2}, \ a\gt 0 \)
4 \( te^{-at}u(t) \) \( \frac {1}{(a+j\omega)^2}, \ a\gt 0 \)
5 \( t^ne^{-at}u(t) \) \( \frac {n!}{(a+j\omega)^{n+1}}, \ a\gt 0 \)
6 \( \delta (t) \) \( 1 \)
7 \( 1 \) \( 2\pi \delta(\omega) \)
8 \( e^{j\omega_0t} \) \( 2\pi \delta(\omega-\omega_0) \)
9 \( \cos \omega_0t \) \( \pi[ \delta(\omega-\omega_0) + \delta(\omega+\omega_0)] \)
10 \( \sin \omega_0t \) \( j\pi[ \delta(\omega+\omega_0) - \delta(\omega-\omega_0)] \)
11 \( u(t) \) \( \pi \delta(\omega) + \frac {1}{j\omega} \)
12 \( \text{sgn} \ t \) \( \frac {2}{j\omega} \)
13 \( \cos \omega_0t \ u(t)\) \( \frac {\pi}{2}[ \delta(\omega-\omega_0) + \delta(\omega+\omega_0)] + \frac {j\omega}{\omega_0^2-\omega^2} \)
14 \( \sin \omega_0t \ u(t)\) \( \frac {\pi}{2j}[ \delta(\omega-\omega_0) - \delta(\omega+\omega_0)] + \frac {\omega_0}{\omega_0^2-\omega^2} \)
15 \( e^{-at} \sin \omega_0t \ u(t) \) \( \frac {\omega_0}{(a+j\omega)^2+\omega_0^2} \)
16 \( e^{-at} \cos \omega_0t \ u(t) \) \( \frac {a+j\omega}{(a+j\omega)^2+\omega_0^2} \)
17 \( \text{rect} \ (\frac {t}{\tau}) \) \( \tau \ \text{sinc} (\frac {\omega\tau}{2})\)
18 \( \frac {W}{\pi} \text{sinc} (Wt) \) \( \text{rect} \ (\frac {\omega}{2W}) \)
19 \( \Delta (\frac {t}{\tau}) \) \( \frac {\tau}{2} \ \text{sinc}^2 (\frac {\omega\tau}{4}) \)
20 \( \frac {W}{2\pi} \text{sinc}^2 (\frac {Wt}{2}) \) \( \Delta (\frac {\omega}{2W}) \)
21 \( \sum_{n=-\infty}^{\infty} \delta(t-nT) \) \( \omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega-n\omega_0) \)
22 \( e^{-t^2/2\sigma^2} \) \( \sigma \sqrt {2\pi} e^{\sigma^2\omega^2/2} \)

$$ $$