Probability and statistics symbols

Probability and statistics symbols

bookmark

Symbol Symbol Name Meaning/Definition Example
\( P(A) \) probability function probability of event A \( P(A) = 0.5 \)
\( P(A \cap B) \) probability of events intersection probability that of events A and B \( P(A\cap B) = 0.5 \)
\( P(A \cup B) \) probability of events union probability that of events A or B \( P(A\cup B) = 0.5 \)
\( P(A | B) \) conditional probability function probability of event A given event B occured \( P(A | B) = 0.3 \)
\( f (x) \) probability density function (pdf) P(a ≤ x ≤ b) = ∫ f (x) dx \( \)
\( F(x) \) cumulative distribution function (cdf) F(x) = P(X≤ x) \( \)
\(μ \) population mean mean of population values \( μ = 10 \)
\( E(X) \) expectation value expected value of random variable X \( E(X) = 10 \)
\( E(X | Y) \) conditional expectation expected value of random variable X given Y \( E(X | Y=2) = 5 \)
\( var(X) \) variance variance of random variable X \( var(X) = 4 \)
\( σ^2 \) variance variance of population values \( σ^2 = 4 \)
\( std(X) \) standard deviation standard deviation of random variable X \( std(X) = 2 \)
\( σ_X \) standard deviation standard deviation value of random variable X \( σ_X = 2 \)
\( \tilde {x} \) median middle value of random variable x \( \tilde {x} = 5 \)
\( cov(X,Y) \) covariance covariance of random variables X and Y \( cov(X,Y) = 4 \)
\( corr(X,Y) \) correlation correlation of random variables X and Y \( corr(X,Y) = 0.6 \)
\( ρ_{X,Y} \) correlation correlation of random variables X and Y \( ρ_{X,Y}=0.6 \)
\( Mo \) mode value that occurs most frequently in population \( \)
\( MR \) sample median half the population is below this value \( \)
\( Q_1 \) lower / first quartile 25% of population are below this value \( \)
\( Q_2 \) median / second quartile 50% of population are below this value = median of samples \( \)
\( Q_3 \) upper / third quartile 75% of population are below this value \( \)
\( x \) sample mean average / arithmetic mean \( x = (2+5+9) / 3 = 5.333 \)
\( s^2 \) sample variance population samples variance estimator \( s^2 = 4 \)
\( s \) sample standard deviation population samples standard deviation estimator \( s = 2 \)
\( z_x \) standard score \( z_x = (x-x) / s_x \)  
\( X ~ \) distribution of X distribution of random variable X \( X ~ N(0,3) \)
\( N(μ,σ^2) \) normal distribution gaussian distribution \( X ~ N(0,3) \)
\( U(a,b) \) uniform distribution equal probability in range a,b \( X ~ U(0,3) \)
\( exp(λ) \) exponential distribution \( f (x) = λe^{-λx} , x≥0 \)  
\( gamma(c, λ) \) gamma distribution \( f (x) = λ c x^{c-1}e^{-λx} / Γ(c), x≥0 \)  
\( χ^2(k) \) chi-square distribution \( f (x) = x^{k/2-1}e^{-x/2} / ( 2^{k/2} Γ(k/2) ) \)  
\( F (k1, k2) \) F distribution   \( \)
\( Bin(n,p) \) binomial distribution \( f (k) = ^nC_k p^k(1-p)^{n-k} \)  
\( Poisson(λ) \) Poisson distribution \( f (k) = λ^ke^{-λ} / k! \)  
\( Geom(p) \) geometric distribution \( f (k) = p(1-p)^k \)  
\( HG(N,K,n) \) hyper-geometric distribution   \( \)
\( Bern(p) \) Bernoulli distribution   \( \)

Read to next Story
Combinatorics Symbols
Combinatorics Symbols -
Symbol Symbol Name M... Vector-right