Calculus & analysis symbols

Calculus & analysis symbols

bookmark

Symbol Symbol Name Meaning/Definition Example
$$ \lim_{x\to x_0} f(x) $$ limit limit value of a function \( \)
\( ε \) epsilon represents a very small number, near zero \( ε → 0 \)
\( e \) e constant / Euler's number e = 2.718281828... \( e = \lim (1+1/x)x , x→∞ \)
\( y ' \) derivative derivative - Lagrange's notation \( (3x^3)' = 9x^2 \)
\( y '' \) second derivative derivative of derivative \( (3x^3)'' = 18x \)
\( y^{(n)} \) nth derivative n times derivation \( (3x^3)^{(3)} = 18 \)
\( \frac {dy}{dx} \) derivative derivative - Leibniz's notation \( d(3x^3)/dx = 9x^2 \)
\( \frac {d^2y}{dx^2} \) second derivative derivative of derivative \( d^2(3x^3)/dx^2 = 18x \)
\( \frac {d^ny}{dx^n} \) nth derivative n times derivation \( \)
\( \dot y \) time derivative derivative by time - Newton's notation \( \)
\( \ddot y \) time second derivative derivative of derivative \( \)
\( D_x y \) derivative derivative - Euler's notation \( \)
\( D_x^2y \) second derivative derivative of derivative \( \)
\( \frac {\partial f(x,y)}{\partial x} \) partial derivative   \( ∂(x2+y2)/∂x = 2x \)
\( ∫ \) integral opposite to derivation \( ∫ f(x)dx \)
\( ∫∫ \) double integral integration of function of 2 variables \( ∫∫ f(x,y)dxdy \)
\( ∫∫∫ \) triple integral integration of function of 3 variables \( ∫∫∫ f(x,y,z)dxdydz \)
\( ∮ \) closed contour / line integral   \( \)
closed surface integral   \( \)
closed volume integral   \( \)
\( [a,b] \) closed interval [a,b] = {x | a ≤ x ≤ b} \( \)
\( (a,b) \) open interval (a,b) = {x | a < x < b} \( \)
\( i \) imaginary unit i ≡ √-1 \( z = 3 + 2i \)
\( z^* \) complex conjugate z = a+bi → z*=a-bi \( z^* = 3 - 2i \)
\( z \) complex conjugate z = a+bi → z = a-bi \( z = 3 - 2i \)
\( Re(z) \) real part of a complex number z = a+bi → Re(z)=a \( Re(3 - 2i) = 3 \)
\( Im(z) \) imaginary part of a complex number z = a+bi → Im(z)=b \( Im(3 - 2i) = -2 \)
\( | z | \) absolute value/magnitude of a complex number |z| = |a+bi| = √(a2+b2) \( |3 - 2i| = √13 \)
\( arg(z) \) argument of a complex number The angle of the radius in the complex plane \( arg(3 + 2i) = 33.7° \)
\( ∇ \) nabla / del gradient / divergence operator \( ∇f (x,y,z) \)
\( \overrightarrow {x} \) vector   \( \)
\( \hat x \) unit vector   \( \)
\( x * y \) convolution y(t) = x(t) * h(t) \( \)
\( δ \) delta function   \( \)
\( ∞ \) lemniscate infinity symbol \( \)